A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine
نویسندگان
چکیده
The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.
منابع مشابه
Corelease of dopamine and GABA by a retinal dopaminergic neuron.
Numerous neurons release two transmitters of low molecular mass, but it is controversial whether they are localized within the same synaptic vesicle, with the single exception of GABA and glycine because they are ferried into the vesicle by the same transporter. Retinal dopaminergic (DAergic) amacrine cells synthesize both dopamine (DA) and GABA. Both transmitters are released over the entire c...
متن کاملCorelease of two fast neurotransmitters at a central synapse.
It is widely accepted that individual neurons in the central nervous system release only a single fast transmitter. The possibility of corelease of fast neurotransmitters was examined by making paired recordings from synaptically connected neurons in spinal cord slices. Unitary inhibitory postsynaptic currents generated at interneuron-motoneuron synapses consisted of a strychnine-sensitive, gly...
متن کاملPresence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons.
The characterization of the Caenorhabditis elegans unc-47 gene recently allowed the identification of a mammalian (gamma)-amino butyric acid (GABA) transporter, presumed to be located in the synaptic vesicle membrane. In situ hybridization data in rat brain suggested that it might also take up glycine and thus represent a general Vesicular Inhibitory Amino Acid Transporter (VIAAT). In the prese...
متن کاملCorelease of acetylcholine and GABA from cholinergic forebrain neurons
Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-syna...
متن کاملSynaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses.
The segregation between vesicular glutamate and GABA storage and release forms the molecular foundation between excitatory and inhibitory neurons and guarantees the precise function of neuronal networks. Using immunoisolation of synaptic vesicles, we now show that VGLUT2 and VGAT, and also VGLUT1 and VGLUT2, coexist in a sizeable pool of vesicles. VGAT immunoisolates transport glutamate in addi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 50 شماره
صفحات -
تاریخ انتشار 2006